White matter maturation reshapes structural connectivity in the late developing human brain.
نویسندگان
چکیده
From toddler to late teenager, the macroscopic pattern of axonal projections in the human brain remains largely unchanged while undergoing dramatic functional modifications that lead to network refinement. These functional modifications are mediated by increasing myelination and changes in axonal diameter and synaptic density, as well as changes in neurochemical mediators. Here we explore the contribution of white matter maturation to the development of connectivity between ages 2 and 18 y using high b-value diffusion MRI tractography and connectivity analysis. We measured changes in connection efficacy as the inverse of the average diffusivity along a fiber tract. We observed significant refinement in specific metrics of network topology, including a significant increase in node strength and efficiency along with a decrease in clustering. Major structural modules and hubs were in place by 2 y of age, and they continued to strengthen their profile during subsequent development. Recording resting-state functional MRI from a subset of subjects, we confirmed a positive correlation between structural and functional connectivity, and in addition observed that this relationship strengthened with age. Continuously increasing integration and decreasing segregation of structural connectivity with age suggests that network refinement mediated by white matter maturation promotes increased global efficiency. In addition, the strengthening of the correlation between structural and functional connectivity with age suggests that white matter connectivity in combination with other factors, such as differential modulation of axonal diameter and myelin thickness, that are partially captured by inverse average diffusivity, play an increasingly important role in creating brain-wide coherence and synchrony.
منابع مشابه
P27: Brain Network as a Pivotal Part in Intelligence Function
Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...
متن کاملGraph theoretical analysis of developmental patterns of the white matter network
Understanding the development of human brain organization is critical for gaining insight into how the enhancement of cognitive processes is related to the fine-tuning of the brain network. However, the developmental trajectory of the large-scale white matter (WM) network is not fully understood. Here, using graph theory, we examine developmental changes in the organization of WM networks in 18...
متن کاملDiffusion tensor imaging of brain development.
Understanding early human brain development is of great clinical importance, as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral organization and maturation. Diffusion tensor imaging (DTI), a recent magnetic resonance (MR) modality which assesses water diffusion in biological tissues at a microstructural level, has revealed a powerful...
متن کاملGrowth and development of the brain and impact on cognitive outcomes.
Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental...
متن کاملBrain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI
BACKGROUND Neural development during human childhood and adolescence involves highly coordinated and sequenced events, characterized by both progressive and regressive processes. Despite a multitude of results demonstrating the age-dependent development of gray matter, white matter, and total brain volume, a reference curve allowing prediction of structural brain maturation is still lacking but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 44 شماره
صفحات -
تاریخ انتشار 2010